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Liver X and thyroid hormone receptors in neurodegeneration
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The role of thyroid hormone (TH) in the development and function of the central nervous system (CNS) has been known for many years.
However, the role of liver X receptors (LXRs) in TH function and protection against neuronal degeneration was not recognized until recently. The
relationship between thyroid hormone receptors (TRs) and LXRs became apparent with the cloning of steroid hormone receptors, leading to the
discovery of the nuclear receptor superfamily. This family includes not only receptors for classical steroid hormones but also many newly
discovered ligand-activated nuclear receptors. LXRs and TRs regulate overlapping pathways in lipid and carbohydrate metabolism, as well as in
overall CNS development and function. These CNS pathways include neuronal migration during cortical and cerebellar layering, myelination,
oligodendrocyte maturation, microglial activation, and astrocyte functions. Furthermore, LXRs likely have unique functions, as evidenced by
the inability of TH to compensate for microglial activation, oligodendrocyte maturation, spinal motor neuron death, and degeneration of
retinal and cochlear neurons in LXRβ knockout mice. The common and unique functions of these two receptors are the subject of this review. We
analyzed some of the most relevant literature on the regulation and function of LXRs and TRs and investigated why both receptors are required
in the human body. We conclude that LXRs and TRs do not represent parallel pathways but rather constitute a single pathway through which the
TH endocrine system regulates cholesterol homeostasis. Subsequently, LXRs, activated by cholesterol metabolites, function as a
paracrine/autocrine system that modulates the target cell response to TH.
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Historical Perspective: LXRs
Liver X receptors (LXRs, LXRα, and LXRβ) belong to a subfamily of the
nuclear receptor superfamily of ligand-activated transcription factors,
which comprises 48 members in the human genome (1). Nuclear receptors
play crucial roles in regulating metabolism, endocrine systems, and the
development and function of the central nervous system (CNS). Although
the functions of thyroid hormone (TH) have been studied for many years,
LXRs were only discovered in the 1990s. Thyroid hormone receptors (TRs),
TRα and TRβ, are differentially expressed in various tissues and have dis-
tinct roles in TH signaling (2). LXRβ (gene name NR1H2) was indepen-
dently discovered by several laboratories (3–6) in 1996 and was initially
designated as OR1, UR, NER, and RIP-15. It was later renamed LXRβ due
to its homology with LXRα (also known as NR1H3), a receptor discovered
in 1994 (7, 8).

LXRα has two major functions in the body: lipid metabolism in organs
such as the liver, intestine, and adipose tissue, and regulation of the im-
mune system, notably in macrophages (9). LXRβ has a broader tissue dis-
tribution than LXRα; while its expression in the liver is low, LXRβ is well ex-
pressed in immune system cells, glial cells in the CNS, colon, gallbladder,
pancreatic islets, retina, and inner ear (10–16). Although it is expressed in
very few neurons in the adult mouse brain (17), LXRβ is widely expressed
in neurons of the fetal brain (18, 19). Both LXRα and LXRβ are expressed
in the ovary, testis, prostate epithelium, and epididymis, where they play
significant roles (20–23).

While the most well-studied function of LXRs is their role in choles-
terol homeostasis (24), a function shared with TRs, cholesterol transport
is just one of many transport functions of LXRs. Like TRs, LXRs regulate
the transport of water by modulating aquaporins (25–29) and glucose
through GLUT4 regulation (30–32). In addition, LXRs regulate the trans-
port of THs and lactate through monocarboxylate transporters MCT8 and
MCT10 (33). Transport of lactate into neurons is essential for neuronal
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nutrition, and its regulation by LXRβ (via MCT1) may explain the loss of
neurons in LXRβ−/− mice.

Classical hormones such as androgens, estrogens, progesterone, glu-
cocorticoids, and thyroid hormone function in endocrine pathways where
glands (such as the testis, ovaries, adrenal glands, and thyroid gland) se-
crete hormones into the bloodstream, which target organs receive via
the vascular system. With the exception of the vitamin D receptor, more
recently discovered members of the nuclear receptor superfamily are
activated by ligands not secreted from endocrine glands but rather syn-
thesized in various cells throughout the body. In some cases, ligands are
acquired from the diet or are pharmaceutical agents. The natural ligands
of LXRs are oxygenated metabolites of cholesterol (oxysterols). Some
cells that synthesize oxysterols also express LXRs, making the LXR system
an autocrine and paracrine system rather than a purely endocrine one.

The two major differences between TH and LXR signaling are: 1) TH
governs the regulation and integration of metabolic homeostasis at the
hypothalamic-pituitary level, but LXR does not; and 2) since oxysterols are
not circulating hormones, LXR activation is not necessarily determined by
plasma levels of oxysterols (34).

It is important to note that even classical steroid receptors can act in a
paracrine manner. For example, dihydrotestosterone (DHT), a ligand for
the androgen receptor, is not a circulating hormone but is synthesized
from testosterone in cells expressing the enzyme steroid 5α-reductases.
Similarly, 3β-Adiol (5α-androstane-3β,17β-diol), a ligand for estrogen
receptor beta (35), is synthesized in cells expressing steroid 5α-reductase
and 17β-hydroxysteroid dehydrogenase type 6 (36). If TH and LXR have a
relationship similar to that of testosterone and DHT, the effects of TH in
cells may vary depending on LXR expression.

Although LXR signaling is not regulated by the hypothalamic–
pituitary–thyroid axis, LXR does regulate thyrotropin-releasing hor-
mone (TRH). By mediating TH’s action on TRH release, LXR influences
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thyroid-stimulating hormone (TSH) levels. In the absence of LXR, there is
excessive TSH release, which stimulates thyroxine (T4) release from the
thyroid gland. In addition, because LXR represses deiodinases, the loss of
LXR can create a hyperthyroid state, which may help explain why LXRβ−/−
mice are resistant to obesity induced by a high-fat diet (33).

LXRs and TRs
The function of THs is mainly mediated through their binding to TRs at
specific TREs (thyroid response elements) on DNA. Both TRs and LXRs
bind to these response elements, which consist of direct repeats of the
half-site sequence 5′-G/AGGTCA-3′, separated by four nucleotides (DR4).
In the absence of their ligands, both TRs and LXRs bind to DR4, recruiting
corepressors and inhibiting the transcription of responsive genes. When
ligands bind, they relieve this repression by causing the release of core-
pressors and subsequent binding of coactivators, leading to the activation
of transcription of responsive genes (37).

TRs can bind to DNA either as homodimers or as heterodimers with
retinoid X receptors (RXRs), while LXRs form obligatory heterodimers
with RXR (38–40). RXRs are a subgroup of the nuclear receptor superfam-
ily, comprising isotypes α, β, and γ , which can form homodimeric and het-
erodimeric complexes with other nuclear receptors (41). The endogenous
ligand for RXR is 9-cis retinoic acid (42). Thus, vitamin A also plays a sig-
nificant role in the regulation of the immune system by TH and LXR (43).

T3, T4, and Deiodinases
T4 is a prohormone that is converted to the active hormone triiodothy-
ronine (T3) through the action of deiodinases. The local activation of
T4 to active T3 by deiodinases is a key mechanism of TH regulation of
metabolism. There are two activating deiodinases, DIO1 and DIO2, and
one inactivating deiodinase, DIO3 (44, 45). In humans, DIO1 is highly ex-
pressed in the liver, while DIO2 is expressed in the hypothalamus, white
fat, skeletal muscle, and brown adipose tissue, where it is essential for
adaptive thermogenesis (46). One key mechanism by which LXR regulates
TH function in both rodents (47) and humans (48) is through the down-
regulation of deiodinases.

Some Complexities of LXRs and TRs Signaling in the Brain
Since cholesterol cannot cross the blood–brain barrier (BBB), it must
be synthesized within the brain. Astrocytes are responsible for choles-
terol synthesis, which is then transported to other cells via the trans-
port protein apolipoprotein E (ApoE) (49, 50). Additionanally, the brain
synthesizes two oxysterols: 25-hydroxycholesterol (25-HC), produced in
microglia (51), and 24-hydroxycholesterol (24-HC), which is catalyzed by
the enzyme CYP46A1 (cholesterol 24-hydroxylase) and expressed in neu-
rons of the hippocampus, cortex, Purkinje cells of the cerebellum, and
interneurons in the hippocampus and cerebellum (52). 24-HC is a major
metabolite of cholesterol in the brain and serves as the route for excreting
excess cholesterol (53, 54). Furthermore, the brain can inactivate oxys-
terols through CYP7B1, which catalyzes hydroxylation of oxysterols at the
6 and 7 positions (55). Although the cellular distribution of CYP7B1 has
not been well investigated, it is one of the most active cytochrome P450
enzymes in the brain (56), making it very unlikely that the cells harboring
this enzyme will respond to oxysterols.

T3 does not cross the BBB, but T4 does. Therefore, deiodinases are ex-
tremely important for the TH function in the brain, and defective deio-
dinases can lead to brain TH deficiency. TH enters the brain either di-
rectly via the BBB or indirectly via the blood–cerebrospinal fluid (CSF)
barrier, with the BBB serving as the primary entry path for T4 (57). TH
enters the choroid plexus through transmembrane transporters MCT8
and organic anion-transporting polypeptide 1C1 (OATP1C1) and exits the
choroid plexus to enter the CSF via TH transmembrane transporters or
through choroid plexus-derived transthyretin secreted into the CSF (58).
DIO2 is expressed in the choroid plexus (59). LXRs regulate CSF dynamics
at both the choroid plexus and the astrocytic end feet, and inactivation
of LXR results in degeneration of the choroid plexus and lack of CSF in
the lateral ventricles (28). This degeneration, along with the loss of DIO2,
leads to reduced TH levels in the brain. Consequently, some phenotypic as-
pects of LXR knockout mice resemble TH deficiency. Once THs have passed
BBB, their local availability depends on the activity of the astrocytic DIO2

to convert T4 to T3. T3 is subsequently inactivated in neurons by DIO3,
which removes the 3’ iodine, producing 3,5-diiodothyronine (T2).

In addition to regulating deiodinases, LXRs also regulate T4 trans-
porters. In humans, as in other primates, the BBB contains MCT8 but lacks
OATP1C1 (60, 61). MCT8 is a highly specific transmembrane TH trans-
porter responsible for the cellular influx and efflux of T4 and T3 (62).
It is indespensible for driving TH-dependent oligodendrocyte differen-
tiation and, consequently, myelination (63, 64). In humans, mutations
in SLC16A2, the gene encoding MCT8, lead to an X-linked syndrome char-
acterized by severe neurological impairment and altered T3 concetrations
due to impaired TH uptake in the developing brain. In mice lacking both
MCT8 and OATP1C1, TH concentrations in the brain are significantly af-
fected (65).

Both TRs and LXRs bind to DR4 on DNA in the absence of their respec-
tive ligands, repreesing genes regulated by DR4 response elements. The
knockout of LXR relieves repression on DR4-responsive genes; however,
what cannot occur in LXR knockout mice is the activation of LXR by lig-
ands and the recruitment of coactivators to enhance the transcription of
LXR-responsive genes. To understanding the phenotype of LXR knocknout
mice, we must consider both the derepression of certain genes and the
absence of activation of others by LXR ligands.

TH regulates metabolic rate, body temperature, cholesterol home-
ostasis, and adrenergic function. Of these, only adrenergic stimulation
is not shared by LXRs. TH regulates cholesterol homeostasis at two ma-
jor points: it increases the low-density lipoprotein (LDL) receptor to fa-
cilitate cholesterol removal from circulation and stimulates cholesterol
7alpha-hydroxylase (CYP7A) to promote cholesterol removal from the
body in the form of bile acids. LXRs act as cholesterol sensors, activated
by cholesterol metabolites (1). Upon activation, they assist TH in elim-
inating cholesterol from the body by inducing cholesterol transporters
ABCA1 and ABCG1, which transport cholesterol out of cells. However, LXRs
also act at multiple levels to reduce TH function: 1) LXR reduces deiodi-
nases, preventing the conversion of T4 to T3; 2) LXR lowers TH levels by
facilitating negative feedback at the hypothalamic level; and 3) LXR in-
duces the expression of the inducible degrader of the LDL receptor (IDOL),
which decreases LDL receptor expression on the cell surface and limits
LDL/cholesterol uptake (66).

LXRs and TRs in Neurodegeneration
Both LXR and TH are essential for normal brain development, influenc-
ing neurogenesis, neuronal and glial cell differentiation and migration,
synaptogenesis, and myelination during early fetal life (67, 68). Dysreg-
ulation of cholesterol metabolism in the CNS has been linked to several
neurological disorders (49, 69–74). Preclinical studies have indicated that
LXRs and TRs can be used as targets for the treatment of neurodegener-
ative diseases (Figure 1), such as Alzheimer’s disease (AD) , Parkinson’s
disease (75, 76), amyotrophic lateral sclerosis (ALS) (77), Huntington’s
disease, and multiple sclerosis (MS) (78).

Although these common and devastating neurodegenerative diseases
are associated with aging, neurodegeneration likely begins much earlier,
as disease symptoms emerge only after a significant number of neurons
have already been lost. Our studies have shown marked expression of
LXRβ in cortical neurons in the fetal mouse brain during later embry-
onic stages (19). LXRβ expression first appears in the cerebral cortex as
early as E14.5 and is strongly expressed in the cortex plate from E16.5
until E18.5. After birth, LXRβ is mainly localized in cortical layers II/III. In
LXRβ−/− mice, there is no defect in neuronal proliferation; however, later-
born neurons fail to migrate to cortical layers II/III as they do in wild-type
(WT) littermates (19). This migration defect is thought to result from a de-
fect in radial glia and reduced expression of the renin receptor, ApoER2
(79). The defect is corrected when TH levels increase, and by postnatal
day 14, there is no detectable difference in the cortex between WT and
LXRβ−/− mice (79). These observations suggest that in the absence of
LXRβ, there is insufficient TH in the fetal brain, leading to a prolonged
repressive role of TR- on TH-responsive genes.

Despite the well-known effects of TH in the developing brain and the
clear role of fetal hypothyroidism in mental retardation, TH is not im-
plicated in late-onset neurodegenerative diseases. However, the loss of
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Figure 1. LXR and related CNS neurological disorders.

LXRβ in mice does lead to age-related neurodegeneration. In LXRβ−/−
mice, there is a loss of dopaminergic (DA) neurons in the substantia ni-
gra (80), large motor neurons in the ventral horn of the spinal cord (81),
epithelial cells of the choroid plexus (28), retinal ganglion cells (15), and
spiral ganglion neurons (Figure 2) (16). All of these conditions develop
with age after the mice are 6 months of age.

One perplexing observation, in view of the loss of DA and motor neu-
rons, is the absence of LXRβ expression in these neurons in adult mice.
This has led to the conclusion that LXRβ in cells other than DA and motor
neurons protects these neurons from age-related loss. These specific cell
types involved remain to be identified. To date, LXRβ has been specifically
deleted from astrocytes (82) and microglia, and there was no observed
loss of DA or motor neurons in these mice. It remains possible that de-
generation of the choroid plexus and defects in CSF, which occur in the ab-
sence of LXR, are major contributors to the neurodegeneration observed
in LXRβ−/− mice.

LXRs and TRs in ALS
ALS is a late-onset, fatal neurodegenerative disorder characterized by the
specific loss of both upper and lower motor neurons (83). The majority
of cases are classified as sporadic, with the etiology remaining unknown.
Less than 10% of ALS cases are familial and associated with defects in the
SOD1, C9ORF72, FUS, and TARDBP genes. Although none of these genes
are regulated by LXR, a proteomic analysis of serum from ALS patients
revealed that the LXR/RXR pathway is one of the most significantly regu-
lated pathways, with both LXRα and LXRβ identified as genetic modula-
tors of the ALS phenotype (84, 85). In mice lacking LXRβ, there is progres-
sive impairment of motor performance leading to hind limb paralysis, loss
of motor neurons in the ventral horn of the spinal cord (Figure 3), and loss
of neuromuscular junctions (80, 81, 86).

A study on the pathogenesis of ALS indicated that 25-HC, an endoge-
nous ligand for LXR, may actively mediate neuronal apoptosis, particularly
in the early symptomatic stage of the disease (87). The failure of the CNS
to remove excess cholesterol can lead to neurodegeneration, as the accu-
mulation of cholesterol may be toxic to neuronal cells. However, choles-

terol accumulation is not the only brain defect caused by defective LXR;
there is also a reduction in 3β,7α-dihydroxycholest-5-en-26-oic acid, a
neuroprotective cholesterol metabolite (88, 89).

Another common defect observed in both ALS and LXRβ−/− mice is the
structural and functional disruption of the blood–CSF barrier. In ALS, there
is disruption of junctions between choroid plexus epithelial cells, activa-
tion of platelets, immune infiltration into the choroid plexus, and degen-
eration of major vasculature associated with the disease (90). The choroid
plexus of LXR knockout mice is severely affected (28), with degeneration
and absence of CSF in the lateral ventricles being prominent characteris-
tics of the LXR−/− mouse brain.

To date, studies have not provided strong evidence to support a role
for TH in ALS. In a cohort of Portuguese patients with ALS, thyroid dysfunc-
tion was not associated with the disease (91), and in a cohort from South-
west China, thyroid dysfunction did not associated with survival or serve
as a prognostic factor for ALS (92). Despite the lack of effect of TH on ALS,
a similar movement disorder is observed in both TH and LXR deficiencies:
pronounced, spontaneous, asymmetrical circling behavior. This behavior
was first reported by Kincaid (93) in genetically hypothyroid mice, which
does not develop a thyroid gland due to a defective TSH gene. The circling
behavior appeared in both male and female mice around postnatal day 35
and persisted throughout their lifespan. The circling was unidirectional,
either clockwise or counterclockwise. This behavior was noted in all fe-
male but not male LXRβ−/− mice. In the Kincaid study, the cycling was
linked to the loss of DA neurons in the substantia nigra, but it remains un-
clear why the behavior only emerged in adult mice. In the LXRβ−/− mice,
a similar cycling behavior was observed, though its etiology has not been
thoroughly investigated.

LXRs and TRs in Dopaminergic Neurons
In the developing mouse brain at E11.5, the LXR agonist 24(S),25-
epoxycholesterol increased midbrain DA neurogenesis from precursor
cells by about 40% in vitro and in vivo (94–96). The LXR-regulated tran-
scription factor responsible for this increase in the differentiation of ra-
dial glia into DA neurons was identified as the basic helix-loop-helix
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Figure 2. The number of spiral ganglion neurons in the cochlea of LXRβ−/− mice is less than that of WT mice. 12 months of age. Scale bars: A and C, 100 μm;
B and D, 50 μm.

transcription factor SREBP1 (sterol regulatory element binding protein 1;
gene name Srebf1) (97). Despite this role of LXRβ in the differentiation of
DA neurons, there is no apparent reduction in the number of DA neurons
in the substantia nigra in 5-month-old LXRβ−/− mice, and their perfor-
mance on the rotarod test was comparable to that of WT mice (80). Thus,
there is a disconnect between LXR’s actions in the fetal development of
DA neurons in vitro and its role in the adult brain.

Knocking out LXR affects the survival of DA neurons. In the substantia
nigra of LXRβ−/− mice, the loss of DA neurons begins to be noticeable af-
ter the mice reach 6 months of age, and by 16 months, there is a marked
reduction in the number of DA neurons. These mice perform poorly on
the rotarod. LXRβ knockout mice also show increased sensitivity to chal-
lenges with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) (17)
or β-sitosterol (80). A confounding factor in these effects is that LXRβ is
not expressed in DA neurons. Thus, LXR appears to influence DA neurons
at two levels: survival with age and neurogenesis at E11.5. In both cases,
it is not LXRβ in the DA neurons themselves, but in other cells that influ-
ence the differentiation of DA neurons. The cells involved during embry-
onic development are likely radial glia, but the specific cells responsible
for the loss of DA neurons in adult mice with age remain to be determined.
It may be that multiple LXR-regulated cells and factors, including choles-
terol accumulation, microglial activation, astrogliosis, or a dysfunction of
the choroid plexus, influence the survival of DA neurons.

TH is also essential for the differentiation of DA neurons (98), but in
this context, it is evident that TRα1 in precursor cells, rather than in DA
neurons, is responsible (99). The transcription factor required for em-
bryonic ventral midbrain neural stem cells (NSCs) to differentiate into
DA neurons is Otx2. TRα1 is coexpressed with Otx2 in cultured ventral
midbrain NSCs. Otx2, in turn, induces a number of other factors, includ-
ing Neurogenin 2 (Ngn2) and Nurr1 (also known as nuclear receptor 4A2,
NR4A2).

Currently, the distinct roles of LXR and TH have not been fully defined.
Published data indicate that the functions of TH and LXR have been inves-
tigated at different stages of differentiation between E11.5 and E13.5.
This is a critical period for the differentiation of DA neurons (100), and
many steps in DA neuronal differentiation occur before E13.5. Until more
detailed timed studies are conducted, it is not possible to separate the
roles of TH and LXR in the differentiation of DA neurons.

Of key interest to human disease is the late-onset of loss of DA neurons
in LXRβ−/− mice. Since Parkinson’s disease is a late-onset condition, the
LXRβ−/− mice may provide valuable insights into this disease.

TRs in Cerebellum
Ishii et al. summarized that various mouse models have been used to
evaluate the effects of TH on cerebellar development, reveling exten-
sive abnormalities that result in an ataxic phenotype (101). The postnatal
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Figure 3. The number of motor neurons in the ventral horn of the spinal cord of LXRβ−/− mice is less than that of WT mice. Neurofilament staining. 11 months
of age. Scale bars: A and C, 50 μm; B and D, 20 μm.

defects observed in the cerebellum of hypothyroid mice are recapitulated
in mice heterozygous for a dominant-negative mutation in the TRα1 re-
ceptor (102, 103). This mutation primarily affects the differentiation of
Purkinje cells and Bergmann glia.

LXRs and TRs in Development of the Dentate gyrus
The dentate gyrus (DG) of the hippocampus plays a prominent role
in learning, memory, and emotion. The subgranular zone (SGZ) of the
hippocampal DG is one of the stem cell–containing niches in the adult
mammalian brain (104). The permissive milieu of the SGZ allows NSCs
to proliferate while promoting the specification and differentiation
of dentate granule neurons. In the DG of LXRβ−/− mice, there is hy-
poplasia and abnormalities in progenitor cell formation and granule
cell differentiation, resulting in autistic-like behavior (105). In GW3965-
treated 3xTg-AD mice, the number of stem cells and proliferating cells
increased in the SGZ (106). Furthermore, LXR activation ameliorated
learning and memory impairments by promoting neuronal survival, NSC
proliferation, and neurogenesis in the DG in different animal models
(107, 108).

Hypothyroidism results in reduced hippocampal volume in adults
(109). THs affect neurogenesis in the DG of adult rats (110) and are es-
sential for preserving nonproliferative cells involved in adult neuroge-
nesis (111). In 2024, Valcárcel-Hernández et al. provided an excellent

summary of THs in the SVZ (subventricular zone) lining the lateral ven-
tricles, the hippocampal SGZ, and the hypothalamus, controlling the gen-
eration of new neuronal and glial progenitors from NSCs, as well as their
final differentiation and maturation programs (112).

LXRs and TRs in Alzheimer’s Disease
AD, the most common cause of dementia globally, is a progressive neu-
rodegenerative disease characterized by initial memory impairment and
cognitive decline, with the presence of amyloid plaques and neurofibril-
lary tangles being crucial for a pathological diagnosis (113). Both TH and
LXR signaling have been implicated in AD (Figure 4). As discussed above,
LXR signaling is intricately linked to TH levels. Because LXR inhibits deiod-
inases, a reduction in LXR signaling should be associated with higher lev-
els of TH. Therefore, the reduced signaling of both TH and LXR in AD is
puzzling.

Several studies have investigated the association between thyroid
dysfunction and dementia risk (114–116). Meta-analyses revealed a
higher prevalence of hypothyroidism in AD, but the authors cautioned that
the finding could not distinguish whether hypothyroidism is a risk factor
for or a consequence of AD (117). One of the most beneficial effects of
TH in AD is its effects in repression of microglial immune responses (118).
However, no definitive link between thyroid dysfunction and AD has been
established (119–121).
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Figure 4. Unraveling the complex roles of LXRs and TRs in neurodegenerative diseases. This diagram depicts the intricate biology of LXRs and TRs and their
roles in neurodegenerative diseases. At the heart of our conceptual framework is how these receptors influence key processes in the brain—from managing
cholesterol levels to shaping brain development. We can see how their actions ripple out to affect various neurodegenerative conditions, including Alzheimer’s
and Parkinson’s diseases, as well as ALS and multiple sclerosis. An interesting twist revealed by the diagram is that LXRs actually help regulate thyroid hormone
function, adding another layer of complexity. We have used different colors to highlight which processes are specific to LXRs (in pink) or TRs (in light blue), while
shared pathways are shown in orange. Looking to the future, we have included promising therapeutic approaches and exciting new research directions in light
green. This visual framework captures our current understanding and also points to where the next chapters in this emerging scientific narrative might lead us.

In the context of LXR and AD, activation of LXR has been considered a
therapeutic strategy (11, 71, 73, 122–124) for several reasons: 1) ApoE,
an LXR-induced gene, promotes the proteolytic degradation of Aβ in var-
ious AD animal models (106, 125–128), thereby reducing brain Aβ bur-
den; 2) Inhibition of neuroinflammation (129, 130), including the acti-
vation of microglia and astrocytes (131, 132); 3) LXR ligands ameliorate
the impairments in synaptic plasticity (133, 134); 4) Genetic loss of LXRs
in APP/PS1 transgenic mice results in increased amyloid plaque burden
(135); 5) T0901317 has beneficial effects on memory by enhancing brain
cholesterol turnover in APPSLxPS1mut mice (136); 6) In APP/PS1 mice,
LXR agonists exert beneficial effects in ameliorating memory impairment
by elevating levels of ApoE and ABCA1, reducing the expression of proin-
flammatory genes, and decreasing Aβ aggregation (137–139); 7) Acti-
vation of LXR with the agonist T0901317 decreased BACE1 expression
and activity by lowering membrane cholesterol levels (140); 8) DMHCA,
a partial LXR agonist, prevented memory decline and significantly
decreased hippocampal Aβ oligomers without affecting plasma lipid
levels (141).

One gene that is upregulated by both LXR and TRβ is the seladin-1
(selective AD indicator-1), encoded by the 3beta-hydroxysterol-Delta24
reductase (DHCR24). DHCR24 is a crucial enzyme in cholesterol synthesis,
catalyzing the conversion of desmosterol into cholesterol and lanosterol
to 24,25-dihydrolanosterol. Both LXRα and TRβ upregulate the transcrip-
tion of DHCR24 (142–144), suggesting it may be a common gene linking
TR and LXR to AD.

LXRs and TRs in Demyelinating Diseases
Since cholesterol is an essential component of all cell membranes and
is particularly enriched in myelin membranes, it is not surprising that
cholesterol metabolism is involved in the processes of demyelination and
remyelination (145). Oligodendrocytes are the cells in the brain respon-
sible for myelination (146). Both LXRs and TRs are critical for promoting
and maintaining myelination (147, 148). Even before myelin synthesis oc-
curs, both receptors are needed for the differentiation of oligodendro-
cytes. LXRβ regulates the number of oligodendrocyte by driving radial
glial cells in the dorsal cortex to become oligodendrocyte progenitor cells
(149). Meanwhile, TH is required for the terminal differentiation of oligo-
dendrocyte precursor cells into myelinating oligodendrocytes by inducing
rapid cell-cycle arrest and transcription of prodifferentiation genes (150,
151).

Therefore, it is not surprising that the knockout of LXRs in mice results
in abnormal myelination and a reduction in the size of myelinated axon in
the mouse brain (70, 152, 153). As described above, LXR has widespread
functions in the body, and inactivation of LXR leads to multiple organ dys-
function in mice. If LXRs have similar roles in humans and mice, it is diffi-

cult to imagine a human surviving with a defective LXR gene without se-
vere defects in lipid homeostasis, vascular disease, and immune and neu-
ronal dysfunction. A mutation in LXRα (p.Arg415Gln) has been reported
to be responsible for familial developing progressive MS (154), but the
association between the LXRα mutation and MS could not be confirmed
by the International MS Genetics Consortium (IMSGC) patient collection
(155). Before this issue can be fully resolved, it is essential to examine
the function of the LXRα with the (p.Arg415Gln) mutation to determine
whether it functions as a normal LXRα and whether the LXR mutation sim-
ply segregates with another gene responsible for the MS phenotype.

Martin-Gutierrez et al. reported that LXR-mediated lipid metabolism
pathways were dysregulated in T cells from patients with relapsing-
remitting MS (RRMS) pathology, potentially contributing to RRMS patho-
genesis (156). The study shows that LXR regulates T cell function by
regulating glycosphingolipid and cholesterol metabolism, although the
specific defect in LXR in T cells that could cause RRMS remains undefined.

MS is an autoimmune disease (78, 157, 158) thought to be due to T-cell
reactions to antigens associated with myelin, such as myelin basic pro-
tein and myelin oligodendrocyte glycoprotein. In chronic demyelinating
inflammatory disease models, TH restores normal levels of myelin basic
protein mRNA and protein (159, 160) and promotes the differentiation of
oligodendrocyte progenitor cells, improving remyelination through TRβ-
mediated T3 effects (161).

T4 activates oligodendrocyte precursors and increases the content
of myelin-forming proteins and NGF in the spinal cord during experi-
mental allergic encephalomyelitis (162). Studies using the TRβ-selective
agonist Sobetirome (GC-1) have found that it promotes remyelination,
enhances oligodendrocyte proliferation, and protects against oligoden-
drocyte death (163–166).

In addition to its effects on oligodendrocytes, another mechanism
through which LXR signaling repairs demyelination damage is by act-
ing on microglia/macrophages, inhibiting the inflammatory response and
providing a supportive environment for oligodendrocyte differentiation
and myelination (167), while also promoting the phagocytic clearance of
myelin debris and cholesterol (168). LXR agonists may be useful in healing
white matter injury, as LXR ligands have been shown to induce oligoden-
drogenesis in rodent injury models (169, 170). However, the challenge of
limiting LXR action to the targeted area must first be addressed.

Concluding Remarks
The aim of this review was to analyze the roles of LXRs and TRs in neu-
rodegenerative diseases (Figure 4). A review of the literature clearly
shows that these two receptors work together to regulate cholesterol
homeostasis, and dysregulation of cholesterol homeostasis is a common
factor in neurodegenerative diseases. Due to their widespread effects
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throughout the body, it is unlikely that generalized dysfunction of either
receptor would lead to selective degeneration of certain neurons without
causing other significant defects in the body. One possibility that has not
yet been addressed is the existence of LXR splice variants that are selec-
tively expressed in the CNS, and it may be dysregulation of these splice
variants that contributes to neurodegenerative diseases. Multiple splice
variants of both LXRα and LXRβ have been reported (171), but their roles
in disease have not yet been investigated. Additionally, the differences
in the genomic and physiological functions of nuclear receptors between
humans and rodents cannot be ignored, highlighting the need for more
research on nuclear receptor signaling in humans or nonhuman primate.
In conclusion, it will be crucial to study nuclear receptors, including LXRs
and TRs, by investigating their splice variants and examining neural tis-
sues from patients with neurodegenerative diseases.
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