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It is well established that both genetic and environmental factors
contribute to risk for schizophrenia (SCZ), and much progress has
been made in identifying the specific factors conferring risk.
However, the nature and extent of interactions between them has
long been a topic of debate. Both the data and methods available to
address this have evolved rapidly, enabling new prospects for
identifying gene–environment interactions in SCZ. To date, there is
limited evidence of strong gene–environment interactions, with
environmental factors, molecular genetic risk, and family history
simultaneously contributing to risk of SCZ. Still, there are several
enduring challenges, some of which can likely be addressed with new
tools, methods, and approaches for investigating gene–environment
interplay. Consequently, advancements in this field will enhance our
capacity to identify individuals most vulnerable to specific
environmental exposures, which is pivotal for targeted prevention
and intervention.

Recent Findings from Molecular Genetics Studies
Family, twin, and adoption studies robustly support the role of genetic
factors in schizophrenia (SCZ) (1–4). While early attempts to identify spe-
cific genetic markers through candidate gene studies faced challenges in
reproducibility, these studies highlighted the importance of properly con-
trolling for multiple testing to reduce the risk of false positives, as well as
the need for large samples to detect variants with small effect sizes (5,
6). In the past 15 years, genome-wide association studies (GWAS) and the
subsequent cascade of downstream analyses have made great strides in
elucidating the genetic foundations of SCZ. Large-scale international col-
laborations have been instrumental in pooling resources, with the latest
study amassing over 76,000 SCZ cases, and this has facilitated compre-
hensive investigation into the genetic basis of SCZ (7). It is now clear that
SCZ is highly polygenic, with risk stemming from the cumulative influence
of common and rare variants with small to moderate effect sizes (odds
ratios 0.78–1.24) (7), and rare copy-number variants with strong effects
(2 to >60x higher risk) (8, 9).

Concomitant with the emergence of genetic associations of high-
confidence with SCZ, polygenic risk scores (PRS) were developed to quan-
tify a person’s predisposition for a disorder which is attributable to the
additive impact of multiple common genetic variants (10). This risk is ex-
pressed as a single score, with single nucleotide polymorphisms (SNPs)
weighted by their effect sizes from GWAS. SCZ-PRS offers a statistically
significant but modest level of prediction and has been used to explore
nosology and establish common genetic underpinnings with other psy-
chiatric and somatic disorders (11). PRS methodologies are continually
refined to enhance predictive power and improve performance across di-
verse populations (12, 13).
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Established and Emerging Environmental Risk Factors
The majority of SCZ risk stems from genetic effects but 19%–36% of the
risk arises from environmental sources (1, 2). Several environmental risk
factors for SCZ have been consistently identified in large-scale epidemi-
ological studies, including cannabis use, pregnancy and birth complica-
tions, infections, winter birth, migration, urban upbringing, stressful life
events, and childhood adversity (14–17). Air pollution is an emerging risk
factor (18) that is complex and typically entwined with social inequality,
and there are likely other unexplored environmental and chemical-based
risk factors awaiting discovery. While the prevalence of these environ-
mental factors varies across populations, they often disproportionately
affect more disadvantaged groups. Some of the identified risk factors
are quite common, for instance, childhood adversity (which encompasses
parental separation) and adverse perinatal factors each have a popula-
tion prevalence of ∼40% in modern western cohorts (19, 20). Despite
the widespread occurrence of environmental risk factors, only a subset of
exposed individuals develops SCZ, which strongly suggests differential
sensitivity due to underlying genetic predisposition.

Investigations of environmental risk have predominantly involved pur-
suing individual risk factors in a hypothesis-driven manner, somewhat
echoing the early genetic approaches. Just as genetic risk exerts effects
through the cumulative impact of multiple genetic factors, it has been
proposed that environmental risk may similarly arise from accumulated
exposure to a range of adverse environmental factors (21). Over the life
course, individuals are subjected to myriad interconnected environmen-
tal exposures at different developmental stages, each potentially having
protective, neutral, or negative impacts on psychiatric risk. This concept,
termed the “exposome,” encompasses the entirety of environmental ex-
posures from conception onward (21).

Mirroring PRS approaches, there have been attempts to generate
an exposome score weighted by the effect sizes of the environmental
factors for SCZ phenotypes (22–25). Unlike genetic studies, which typi-
cally require only a single blood sample to derive genetic risk, exposome
research requires richly phenotyped, longitudinal, population-based
cohorts. While this research is still in early stages, there is optimism that
embracing the complexity and dynamic nature of environmental expo-
sures will deliver further elucidation of their collective influence on SCZ.

Is Gene-Environment Interplay the Missing Link?
Exploring gene-environment interplay, which encompasses both gene-
environment correlation (where genotype influences exposure to en-
vironmental factors, termed rGE) and gene–environment interaction
(where the effect of the genotype depends on the presence of an envi-
ronmental factor, or vice versa, termed G × E), holds promise for gaining
further insight into the etiology of SCZ.

The SNP-based heritability of SCZ identified in GWAS accounts for
∼24% of the variance, a stark contrast to the estimates of ∼80% from
twin studies (2, 4, 7). While rare genetic variation accounts for some of
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the discrepancy, G × E has been theorized to at least partially explain this
heritability gap, and this is supported by one recent study (26).

Early G × E studies in SCZ relied on proxies such as family history for
genetic risk assessment, or examined single candidate genes, as summa-
rized by earlier reviews (17, 27, 28). These studies encountered similar
power issues and biases as candidate gene association studies and of-
ten failed to replicate. Genome-wide approaches are considered superior
to hypothesis-driven methods for genetic associations but require pro-
hibitively large samples for G × E studies. Therefore, gene prioritization
strategies are essential. In one successful example, a genome-wide envi-
ronment interaction study used a two-stage design to reveal a significant
interaction between in utero exposure to cytomegalovirus infection and
a variant within the CTNNA3 gene (29). First, the association between the
exposure and the complete set of SNPs was assessed, then these priori-
tized SNPs were examined further to identify interaction effects for the
outcome. This variant was not previously linked to SCZ, and this interac-
tion was subsequently replicated (30).

In recent years, a few studies have investigated G × E interactions us-
ing PRS as an indicator of genetic liability to SCZ. Most of these studies
report independent effects of PRS and environmental exposures and no
evidence for multiplicative interactions, including for infections (31), ad-
verse perinatal factors (32, 33), and childhood adversity (34). One study
found evidence for an additive interaction effect between SCZ-PRS and
childhood adversity on psychosis phenotypes—but it was mediated by
a measure of affective dysregulation (35). Even for cannabis use, which
demonstrates modest genetic correlations with SCZ (36–38), G × E stud-
ies report null interactions. Similarly, for urbanicity, studies support a de-
gree of rGE (39, 40), but null interaction effects for birth in densely popu-
lated areas on SCZ risk (41). Still, large-scale genetic studies have rarely
considered the impact of variation in environmental risk, highlighting the
need for further research in this area.

On the other hand, positive additive interactions have been observed
between dichotomized SCZ-PRS and certain environmental factors such
as lifetime regular cannabis use and early-life adversities (42). These
findings suggest a synergistic effect, indicating that the combined influ-
ence of genetic predisposition and environmental exposure exceeds the
sum of their individual effects. There was no evidence of interaction ef-
fects for winter birth, hearing impairment, or child abuse. Positive addi-
tive interactions have also been identified for exposome risk scores and
SCZ-PRS for SCZ spectrum disorders (24, 43, 44). Still, there is the need
for confirmatory studies in large cohorts and different populations.

Presently, findings from PRS studies do not support the classic G × E
(multiplicative) interaction model, whereby genotype and environmen-
tal factors only exert effects when both are present. Instead, current ev-
idence suggests that genetic and environmental factors both contribute
to risk through either independent or additive effects. However, statisti-
cal considerations for detecting and interpreting G × E interactions, such
as choice of scale and model selection, are often overlooked. These issues
have been extensively discussed, with recommendations for best practice
(45, 46). Furthermore, it would be premature to entirely reject G × E hy-
potheses on the basis of PRS, which capture only a small portion of the ex-
pected genetic liability, among other methodological limitations (47, 48).

Future Focus
The extent to which there is interplay between genetic, familial, and en-
vironmental factors in the development of SCZ is still largely unknown.
While we now possess a wealth of data on genetic and environmental risk
factors, the challenge lies in making connections between them and then
translating findings into clinically useful insights.

Challenges with GWAS and PRS Studies
Although findings from GWAS have provided useful biological insights
into SCZ, they have yet to translate into tangible improvements in di-
agnosis and treatment. Despite their powerful impact on research, PRS
have little clinical utility. Moreover, variations between the top and bot-
tom percentiles might be exaggerated due to the case–control design of
GWAS, with more modest risk prediction found in other real-world set-
tings such as electronic health records (49). Assortative mating and rGE

can also contribute to inflation of GWAS estimates (50). To address this,
family-based GWAS designs have been utilized for several disorders by
constructing PRS from non-transmitted parental alleles, albeit not yet
implemented for SCZ (51). These designs can help identify rare variants
and provide less biased estimates of direct genetic effects by reducing
confounding from assortative mating and population stratification (51);
however, they pose challenges in terms of recruitment of family members
of individuals with SCZ, acquiring informed consent, and limited statisti-
cal power.

As GWAS sample sizes have increased, so has the proportion of the
variance explained by PRS, nevertheless a ceiling effect is impending,
whereby further increases in sample size will yield diminishing returns in
explanatory power (52). However, these scores may have other useful ap-
plications, through correlations with symptoms and clinical features they
may prove valuable in distinguishing between psychiatric disorders and
optimal treatment approaches (53, 54).

Expanding the Analytical Toolkit
Although they minimize the multiple testing burden, PRS are likely too
broad to be useful for more specific G × E interactions, necessitating
more focused approaches and methodological tools. For instance, two-
step designs which reduce the initial pool of target SNPs are a resource-
ful way to circumnavigate the prohibitive multiple testing burden (29,
55, 56). Fine-mapping methods reduce GWAS-derived loci to a smaller
set of likely causal variants and can aid prioritization of genes for down-
stream G × E analyses (7). Modified PRS approaches endeavor to enhance
polygenic risk prediction by leveraging correlated phenotypes (57), while
others focus on enrichment of genetic variants at the biological pathway
level (58).

Beyond genomics, various omics technologies have been applied to
examine different aspects of SCZ pathogenesis and may yield further
insights about the intermediary paths between genotype and environ-
mental factors (59). These advancements offer novel avenues for cap-
turing genetic risk and biomarkers for downstream application in gene-
environment studies.

Other Sources of Genetic Variation
While recent focus has been on identifying common genetic variants asso-
ciated with SCZ, rare genetic variants remain relatively unexplored in the
context of G × E interactions. Only recently have large-scale collabora-
tions, like the Schizophrenia Exome Sequencing Meta-Analysis (SCHEMA)
consortium, amassed sufficient sequence data from many studies to iden-
tify rare genetic variants with exome-wide significance. The study iden-
tified ultra-rare coding variants in 10 genes with strong effect sizes
(odds ratios 3–50, P < 2.14 × 10−6) and overlapping findings with the
most recent GWAS (60). However, several rare copy-number variations
(CNVs), involving deletions or duplications of large segments of DNA, have
been identified which can have substantial impact on risk of SCZ. Indi-
viduals carrying associated CNVs, such as the 22q11.2 deletion, may be
more likely to be exposed to adverse environmental exposures due to
the impact on medical, social, and cognitive aspects (61). It has been
reported that lifetime stress may influence psychosis risk symptoms in
22q11.2 deletion carriers, suggesting that it may be worth further in-
vestigating the role of environmental factors in the expression of psy-
chosis risk among those with CNVs (62). Rare variants could be a promis-
ing avenue of exploration in a precision medicine context given that they
are a single locus of strong effect, yet their rarity poses methodological
challenges in terms of garnering adequate statistical power for scien-
tific investigation. The scarcity of G × E studies using rare variants lim-
its the field’s current comprehension of the genetic component of the
interaction.

The spotlight on molecular methodologies in human genetics should
not overlook the significance of familial phenotypic records in genetic
medicine and genetic epidemiology (63). There are several recent and
emerging methods for model-based estimates of liability from family
records, such as family genetic risk scores (FGRS) (64), the liability thresh-
old on family history (LT-FH) (65), and Pearson-Aitken family genetic
risk scores (PA-FGRS) (66). FGRS have already been used to evaluate
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diagnostic stability, genetic architecture, and clinical features of several
psychiatric disorders (67, 68). Although counterintuitive, PRS and indi-
cators of family history have low correlations and appear to contribute
independently to SCZ prediction (66).

Increasing Ancestral Diversity
The overwhelming majority of molecular genetic studies have been con-
ducted in populations of European ancestry, potentially exacerbating
health inequalities and impeding scientific progress (69). Several initia-
tives are underway to diversify these samples (7, 70), which will provide
opportunities to increase our understanding of genetic risk across differ-
ent environments, cultures, and ancestries.

As with the genetic findings, the bulk of the reliable evidence on envi-
ronmental risk factors primarily stems from European and North Ameri-
can studies. Nordic registers, documenting numerous medical, social and
demographic factors for the entire population from birth, are a rich re-
source for investigating the impact of environmental risk factors in rare
psychiatric disorders and have provided some of the most robust epidemi-
ological estimates (20, 71, 72).

Exploring more diverse settings and countries with greater environ-
mental variability will likely clarify whether there are key cultural dif-
ferences and aid understanding of true etiological associations. The
challenge persists that to comprehensively investigate the genetic and
environmental contributions to SCZ requires the rare combination of
large, genotyped cohorts with longitudinal assessments of several envi-
ronmental exposures over the life course.

Conclusion
There is still much to uncover regarding the interplay between genetic,
familial, and environmental factors in SCZ. Undoubtedly, there are ad-
ditional environmental factors and gene–environment interactions yet
to be discovered. Given the high degree of shared genetic and environ-
mental risk among psychiatric disorders, exploring G × E may help to
isolate disorder-specific associations and pinpoint mediating or mod-
erating biological pathways. Advancements in genetic and statistical
tools will likely accelerate G × E research and maximize the utiliza-
tion of existing datasets. The prospect of identifying individuals most
vulnerable to specific environmental exposures underscores the impor-
tance of further exploration, offering opportunities for prevention and
intervention.
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